Publication

Contention elimination by replication of sequential sections in distributed shared memory programs

Willy Zwaenepoel
2001
Conference paper
Abstract

In shared memory programs contention often occurs at the transition between a sequential and a parallel section of the code. As all threads start executing the parallel section, they often access data just modified by the thread that executed the sequential section, causing a flurry of data requests to converge on that processor.We address this problem in a software distributed shared memory system by replicating the execution of the sequential sections on all processors. Communication during this replicated sequential execution is reduced by using multicast.We have implemented replicated sequential execution with multicast support in OpenMP/NOW, a version of of OpenMP that runs on networks of workstations. We do not rely on compile-time data analysis, and therefore we can handle irregular and pointer-based applications. We show significant improvement for two pointer-based applications that suffer from severe contention without replicated sequential execution.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.