Thanks to the rapid development of mobile sensing technologies (like GPS, GSM, RFID, accelerometer, gyroscope, sound and other sensors in smartphones), the large-scale capture of evolving positioning data (called mobility data or trajectories) generated by moving objects with embedded sensors has become easily feasible, both technically and economically. We have already entered a world full of trajectories. The state-of-the-art on trajectory, either from the moving object database area or in the statistical analysis viewpoint, has built a bunch of sophisticated techniques for trajectory data ad-hoc storage, indexing, querying and mining etc. However, most of these existing methods mainly focus on a spatio-temporal viewpoint of mobility data, which means they analyze only the geometric movement of trajectories (e.g., the raw ‹x, y, t› sequential data) without enough consideration on the high-level semantics that can better understand the underlying meaningful movement behaviors. Addressing this challenging issue for better understanding movement behaviors from the raw mobility data, this doctoral work aims at providing a high-level modeling and computing methodology for semantically abstracting the rapidly increasing mobility data. Therefore, we bring top-down semantic modeling and bottom-up data computing together and establish a new concept called "semantic trajectories" for mobility data representation and understanding. As the main novelty contribution, this thesis provides a rich, holistic, heterogeneous and application-independent methodology for computing semantic trajectories to better understand mobility data at different levels. In details, this methodology is composed of five main parts with dedicated contributions. Semantic Trajectory Modeling. By investigating trajectory modeling requirements to better understand mobility data, this thesis first designs a hybrid spatio-semantic trajectory model that represents mobility with rich data abstraction at different levels, i.e., from the low-level spatio-temporal trajectory to the intermediate-level structured trajectory, and finally to the high-level semantic trajectory. In addition, a semantic based ontological framework has also been designed and applied for querying and reasoning on trajectories. Offline Trajectory Computing. To utilize the hybrid model, the thesis complementarily designs a holistic trajectory computing platform with dedicated algorithms for reconstructing trajectories at different levels. The platform can preprocess collected mobility data (i.e., raw movement tracks like GPS feeds) in terms of data cleaning/compression etc., identify individual trajectories, and segment them into structurally meaningful trajectory episodes. Therefore, this trajectory computing platform can construct spatio-temporal trajectories and structured trajectories from the raw mobility data. Such computing platform is initially designed as an offline solution which is supposed to analyze past tr
Dimitrios Kyritsis, Jinzhi Lu, Xiaochen Zheng
Dimitrios Kyritsis, Jinzhi Lu, Xiaochen Zheng