Myocardial Motion Analysis from B-Mode Echocardiograms
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a new method for estimating heart motion from two-dimensional (2D) echocardiographic sequences. It is inspired by the Lucas-Kanade algorithm for optical flow which estimates motion parameters over a sliding window. However, instead of assuming t ...
Echocardiography is a widely used imaging technique to examine myocardial function in patients with known or suspected heart disease. The analysis of ventricular wall motion and deformation, in particular, allows to assess the extent of myocardial ischemia ...
For over a century, electrocardiology has been observing human cardiac activity through recordings of electrocardiograms (ECG). The potential differences derived from the nine electrodes of the standard 12-lead ECG, placed at their designated positions, ar ...
Background—Objective, quantitative, segmental noninvasive/bedside measurement of cardiac motion is highly desirable in cardiovascular medicine, but current technology suffers from significant drawbacks, such as subjectivity of conventional echocardiographi ...
We present a new method for estimating heart motion from two-dimensional echocardiographic sequences by exploiting two ultrasound modalities: B-mode and tissue Doppler. The algorithmestimates a two-dimensional velocity field locally by using a spatial affi ...
In this article we propose a cardiac motion estimation technique that uses non-rigid registration to compute the dense cardiac displacement field from 2D ultrasound sequences. Our method employs a semi-local deformation model which provides controlled smoo ...
We present a new framework to estimate and visualize heart motion from echocardiograms. For velocity estimation, we have developed a novel multiresolution optical flow algorithm. In order to account for typical heart motions like contraction/expansion and ...
We propose a new global registration method for estimating the cardiac displacement field in 2D sequences of ultrasound images of the heart. The basic idea is to select a reference frame (e.g., the first image of a cycle) and to map each image in the seque ...