Cyclic voltammetry was used for the electrochemical study of a Ni thin film (similar to 880 nm) deposited on an yttria-stabilized zirconia (YSZ) solid electrolyte pellet at temperatures between 350 and 450 degrees C at 20 kPa O-2 and atmospheric pressure. NiO formed electrochemically by the O2- species supplied from the electrolyte upon anodic polarization, while it grew according to the parabolic growth law, in agreement with Wagner's oxidation theory of metals at high temperatures. A model for the NiO formation was proposed, where NiO is formed at the Ni/YSZ interface and grows by the outward diffusion of Ni2+ species through NiO, which is determined as the rate-limiting step. This implies the autoinhibition of NiO formation by its continuous growth. The above result agrees with Wagner's theory; however, a difference between the latter and the current model is the means of supplying oxygen for NiO formation. Also, O-2 evolution reaction is not firmly affected by NiO formation because it is controlled by the electronic current. An apparent activation energy of the limiting Ni2+ diffusion step was calculated to be 35 kJ/mol under 400 mV and decreased with potential increase.
Jan Van Herle, Suhas Nuggehalli Sampathkumar, Khaled Lawand, Zoé Mury
Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Fabian Fischer, Hanxuan Wang, Charlotte Elisabeth Marie Roullier, Patricia Brandl
Sophia Haussener, Etienne Boutin