This research assesses the effect of greenhouse gas (GHG) emission constraints imposed in biofuel importing countries on the export potential of biofuel producing countries. Several countries are promoting the introduction of biofuels on their energy matrix through ambitious biofuel mandates but also specify a certain level of GHG emission reduction that biofuels should fulfil. Biofuel producing countries focused on the international market should comply with this criterion in order to supply biofuels to those countries. Biofuel producers should then report the GHG emission saving (GES) of the biofuel they supply. A critical issue in this assessment is the inclusion of GHG emissions from land-use change (LUC) induced by the production of feedstock for biofuels. Focusing on the Argentinean case, this thesis analyses the soybean-based biodiesel export potential of Argentina to the European Union (EU), including the GES threshold imposed in the EU Renewable Energy Directive (RED). The thesis therefore focuses on estimating the biofuel GES based on the impact of soybean production on direct land-use changes (dLUC) at the country level. Key factors influencing this result include the policy framework regulating the biofuel supply chain, the evolution of prices and demand for soybean-based products and the feedstock production patterns. The thesis proposes a modeling approach to assess the effect of these factors on soybean-based biodiesel production and exports. The approach is based on a market analysis of soybean and of higher value-added products, a conceptual modeling framework and a simulation model. The market analysis serves as a background study to define the modeling foundations. The conceptual modeling framework specifies the main interaction among producers in the biodiesel supply chain and their link to international markets, land-use changes and GHG emissions. Simulations are then performed to assess how those key factors affect the Argentinean (AR) biodiesel export potential to the EU. To this end, a system dynamics simulation model is developed. The simulation model includes a life cycle assessment model used to estimate the biofuel GES. The research explicitly addresses the allocation of biodiesel production between two types of producers and two market destinations, provided that specific policies regulate the domestic biodiesel industry. Land supply for soybean production is estimated based on the evolution of demand for soybean, competing and higher value-added products. Dynamics in the international markets are addressed through a scenario-based approach to define a plausible scenario of the market evolution. Feedstock production patterns are accounted for by disaggregating soybean production in four different regions (Centre, South-East, North-East and North-West). In each region, the expansion of managed lands is modeled based on the current share of three soybean cultivation methods and seven unmanaged land types. The biofuel GE