When an injective pseudo-Boolean function f:B^n -> R is minimized, where B^n=0,1^n is the set of vertices of the unit-hypercube, it is natural to consider so-called greedy vertex-following algorithms. These algorithms construct a sequence of neighbouring (Hamming distance 1) vertices with decreasing f-value. The question arises as to when such algorithm will find the global optimum given any starting point. This paper describes a hierarchy of such classes of fonctions that are shown to strictly contain each other. These classes are, in increasing order of generality, the threshold, the saddle-free, the pseudomodular, the completely unimodal, the unimodal, and the unimin (respectively, unimax) functions. Some considerations as to the complexity of the above-mentioned class of algorithm are also made.
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Leonardo Cristella, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Davide Di Croce, Kun Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Pratyush Das, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer
Michaël Unser, Alexis Marie Frederic Goujon, Joaquim Gonçalves Garcia Barreto Campos