We observe that the time required to compute the star discrepancy of a sequence of points in a multidimensional unit cube is prohibitive and that the best known upper bounds for the star discrepancy of (t,s)-sequences and (t,m,s)-nets are useful only for sample sizes that grow exponentially with the dimension s. Then, an algorithm to compute upper bounds for the star discrepancy of an arbitrary set of n points in the s-dimensional unit cube is proposed. For an integer k≥1, this algorithm computes in O(nslogk+2^s*k^s) time and O(k^s) space a bound that is no better than a function depending on s and k. As an application, we give improved upper bounds for the star discrepancy of some Faure (0,m,s)-nets for s∈{7,…,20}.
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Leonardo Cristella, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Davide Di Croce, Kun Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Pratyush Das, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer
Lenka Zdeborová, Emanuele Troiani, Giovanni Piccioli
François Maréchal, Jonas Schnidrig, Cédric Terrier