Decision modelA decision model in decision theory is the starting point for a decision method within a formal (axiomatic) system. Decision models contain at least one action axiom. An action is in the form "IF is true, THEN do ". An action axiom tests a condition (antecedent) and, if the condition has been met, then (consequent) it suggests (mandates) an action: from knowledge to action. A decision model may also be a network of connected decisions, information and knowledge that represents a decision-making approach that can be used repeatedly (such as one developed using the Decision Model and Notation standard).
Decision theoryDecision theory (or the theory of choice; not to be confused with choice theory) is a branch of applied probability theory and analytic philosophy concerned with the theory of making decisions based on assigning probabilities to various factors and assigning numerical consequences to the outcome. There are three branches of decision theory: Normative decision theory: Concerned with the identification of optimal decisions, where optimality is often determined by considering an ideal decision-maker who is able to calculate with perfect accuracy and is in some sense fully rational.
Decision treeA decision tree is a decision support hierarchical model that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains conditional control statements. Decision trees are commonly used in operations research, specifically in decision analysis, to help identify a strategy most likely to reach a goal, but are also a popular tool in machine learning.
ScheduleA schedule or a timetable, as a basic time-management tool, consists of a list of times at which possible tasks, events, or actions are intended to take place, or of a sequence of events in the chronological order in which such things are intended to take place. The process of creating a schedule — deciding how to order these tasks and how to commit resources between the variety of possible tasks — is called scheduling, and a person responsible for making a particular schedule may be called a scheduler.
Mathematical optimizationMathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
DataIn common usage and statistics, data (USˈdætə; UKˈdeɪtə) is a collection of discrete or continuous values that convey information, describing the quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted formally. A datum is an individual value in a collection of data. Data is usually organized into structures such as tables that provide additional context and meaning, and which may themselves be used as data in larger structures.
Representativeness heuristicThe representativeness heuristic is used when making judgments about the probability of an event under uncertainty. It is one of a group of heuristics (simple rules governing judgment or decision-making) proposed by psychologists Amos Tversky and Daniel Kahneman in the early 1970s as "the degree to which [an event] (i) is similar in essential characteristics to its parent population, and (ii) reflects the salient features of the process by which it is generated".
Availability heuristicThe availability heuristic, also known as availability bias, is a mental shortcut that relies on immediate examples that come to a given person's mind when evaluating a specific topic, concept, method, or decision. This heuristic, operating on the notion that, if something can be recalled, it must be important, or at least more important than alternative solutions not as readily recalled, is inherently biased toward recently acquired information. The mental availability of an action's consequences is positively related to those consequences' perceived magnitude.
Optimizing compilerIn computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.
Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.