Many decision problems in science, engineering, and economics are affected by uncertainty, which is typically modeled by a random variable governed by an unknown probability distribution. For many practical applications, the probability distribution is onl ...
Wasserstein balls, which contain all probability measures within a pre-specified Wasserstein distance to a reference measure, have recently enjoyed wide popularity in the distributionally robust optimization and machine learning communities to formulate an ...
The problem of allocating the closed-loop poles of linear systems in specific regions of the complex plane defined by discrete time-domain requirements is addressed. The resulting non-convex set is inner-approximated by a convex region described with linea ...
I started my PhD studies in August 2014 with a strong desire to push my own limits without knowing precisely the areas I wanted to cover in detail. To me, it was clear that I was interested by many different fields, however, I was particularly concerned wi ...
Enabling analysis of non-linear systems in linear form, the Koopman operator has been shown to be a powerful tool for system identification and controller design. However, current data-driven methods cannot provide quantification of model uncertainty given ...
This thesis work focuses on optimal control of partial differential equations (PDEs) with uncertain parameters, treated as a random variables. In particular, we assume that the random parameters are not observable and look for a deterministic control which ...
An accurate assessment of the risk of extreme environmental events is of great importance for populations, authorities and the banking/insurance/reinsurance industry. Koch (2017) introduced a notion of spatial risk measure and a corresponding set of axioms ...
Adversarial learning is an emergent technique that provides better security to machine learning systems by deliberately protecting them against specific vulnerabilities of the learning algorithms. Many adversarial learning problems can be cast equivalently ...
Stochastic programming and distributionally robust optimization seek deterministic decisions that optimize a risk measure, possibly in view of the most adverse distribution in an ambiguity set. We investigate under which circumstances such deterministic de ...
We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed ...