Multiexponential Electronic Spin Relaxation and Redfield's Limit in Gd(III) Complexes in Solution: Consequences for 17O/1H NMR and EPR Simultaneous Analysis
Related publications (42)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Solid-state NMR can provide information about the atomic level structure and dynamics of materials. It directly probes symmetry and structure at nuclear sites, and is especially useful for investigation of disordered or amorphous solids that lack long rang ...
Nuclear magnetic resonance (NMR) methods are powerful tools employed in many fields, including physics, chemistry, material science, biology, and medicine. The use of NMR methodologies in an even wider range of applications is often hindered by the relativ ...
The first full protocol for nuclear magnetic resonance (NMR) crystallography (NMRX) using chemical shifts was developed a decade ago, and it combines experimental isotropic chemical shifts with crystal structure prediction (CSP) and with the calculation of ...
The electrically detected magnetic resonance (EDMR) results presented in this thesis demonstrate
a spin dependence of the charge transfer between an electrode and an electrolyte. These results
were found using simultaneous detection of continuous wave elec ...
Dissolution dynamic nuclear polarization (dDNP) is a powerful technique that enhances the magnetic resonance signal of nuclear spins by several orders of magnitude. DNP relies on the principle of cross-relaxation by electron spins driven out of equilibrium ...
The development of homonuclear dipolar decoupling sequences to obtain high-resolution H-1 NMR spectra from solids has recently celebrated its 50th birthday. Over the years, a series of different decoupling schemes have been developed, starting with the pio ...
A previous study of the effect of Gadolinium doping on the dynamic polarization (DNP) of C-13 using trityls showed that the rate at which the polarization builds up is almost independent of the Gadolinium concentration, while the electron spin-lattice rela ...
Nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and ferromagnetic resonance (FMR) spectroscopy can open up the possibility of studying many scientifically and biologically relevant samples at the µm and sub-µm scale. Examples of vol ...
Dynamic Nuclear Polarization (DNP) is currently one of the most efficient ways of enhancing sensitivity in solid-state Nuclear Magnetic Resonance (NMR) experiments. The DNP protocol consists in doping a sample with a small amount of paramagnetic species, t ...
Dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) has developed into an invaluable tool for the investigation of a wide range of materials. However, the sensitivity gain achieved with many polarizing agents suffers from an unf ...