The growing demand for high levels of recombinant proteins of medical and pharmaceutical interest stimulates the development of cell bioprocess technology. Spin-filter technology is employed in order to reach high levels of such compounds. The aim of this thesis was to characterize the mechanisms of cell retention, as well as filter fouling during animal cell spin-filter perfusion cultures. A good understanding of these mechanisms would allow a good optimization of spin-filter parameters and culture conditions in order to achieve high cell density cultures at large scale operation and for long-time and thus increase proteins productivity. The first part of the thesis was focused on the study of particle retention as a function of four main parameters: filter pore size, filter rotation speed, perfusion rate and particle concentration, during perfusion simulations of agarose beads of 13 μm in diameter. Bead retention by filters with pore sizes of 13 and 14.5 μm, larger than the mean particle diameter was found to be dependent mainly on the filter rotation velocity and filter pore size. Filter retention followed a saturation dynamics with an initial direct correlation with respect to filter rotation rate. A plateau was reached above a filter tangential velocity of 0.45 m/s and 0.87 m/s for filters with pore size of 13 and 14.5 μm respectively. The lower the filter velocity was, the greater the influence of perfusion rate on bead retention, whereas the retention was slightly improved when the particle concentration was increased. The presence of a draft tube around open spin-filters was observed to lower the retention, with the effect being greater for non-porous than for porous draft tubes. In the second part of this work, a prediction of radial particle migration near the surface of rotating filter was developed. The lift force was demonstrated to be important in the spin-filter system since it contributes to particle removal from the filter surface. Competition between centrifugal sedimentation, lift forces, Stokes drag and perfusion forces were found to be responsible for determining particle motion relative to the filter. At certain filter rotation rates, centrifugation and lift forces are sufficiently high as to balance perfusion flow and result in the movement of particles away from the filter, a situation that experimentally was found to correspond to maximum particle retention. The model also revealed that filter acceleration is the key parameter to be conserved from small to large scale in order to achieve similar retention rates. This hypothesis has been confirmed experimentally. Then spin-filter cell retention was modeled using response surface methodology. A second-order polynomial model was used to predict the effects of the filter pore size, cell concentration, perfusion capacity and filter acceleration on cell retention. The retention rates obtained experimentally during two different spin-filter perfusion cultures of CHO SSF3 agreed
Dario Floreano, Charalampos Vourtsis, Victor Casas Rochel, Nathan Samuel Müller, William John Stewart
Alcherio Martinoli, Lucas Cédric Wälti