Correct prediction of particle transport by surface waves is crucial in many practical applications such as search and rescue or salvage operations and pollution tracking and clean-up efforts. Recent results by Deike et al. (J. Fluid Mech., vol. 829, 2017, ...
Ultrafast ultrasound imaging, characterized by high frame rates, generates low-quality images. Convolutional neural networks (CNNs) have demonstrated great potential to enhance image quality without compromising the frame rate. However, CNNs have been most ...
We present a framework for performing regression when both covariate and response are probability distributions on a compact and convex subset of Rd. Our regression model is based on the theory of optimal transport and links the conditional Fr'echet m ...
Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affec ...
The discretization of robust quadratic optimal control problems under uncertainty using the finite element method and the stochastic collocation method leads to large saddle-point systems, which are fully coupled across the random realizations. Despite its ...
In 2019, Eliud Kipchoge ran a sub-two hour marathon wearing Nike's Alphafly shoes. Despite being the fastest marathon time ever recorded, it wasn't officially recognized as race conditions were tightly controlled to maximize his success. Besides, Kipchoge' ...
This article presents the Lightning Performance (LP) assessment of a realistic portion of the Italian distribution network with the use of probability distributions for lightning parameters inferred from local data recorded by a Lightning Location System ( ...
Distribution-on-distribution regression considers the problem of formulating and es-timating a regression relationship where both covariate and response are probability distributions. The optimal transport distributional regression model postulates that th ...
Since the birth of Information Theory, researchers have defined and exploited various information measures, as well as endowed them with operational meanings. Some were born as a "solution to a problem", like Shannon's Entropy and Mutual Information. Other ...
We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting, in the challenging regime where the matrices to infer have a rank growing linearly with the system size. This is in contrast with most existin ...