Elimination of flip-angle effects in two-dimensional NMR spectroscopy. Application to cyclic nucleotides
Related publications (45)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In numerous biological processes that constitute the base of living organisms, protein function is fundamentally related to internal dynamics occurring on μs-ms time scales that can give rise to chemical exchange contributions to relaxation. In a heteronuc ...
We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with H-1 detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and ...
Pseudocontact shifts (PCSs) arise in para-magnetic systems in which the susceptibility tensor is anisotropic. PCSs depend upon the distance from the paramagnetic center and the position relative to the susceptibility tensor, and they can be used as structu ...
Proton NMR spectroscopy is emerging from translational and preclinical neuroscience research as an important tool for evidence based diagnosis and therapy monitoring. It provides biomarkers that offer fingerprints of neurological disorders even in cases wh ...
Slow dynamic processes, such as biomolecular folding/unfolding, macromolecular diffusion, etc., can be conveniently monitored by solution-state two-dimensional (2D) NMR spectroscopy, provided the inverse of their rate constants does not exceed the nuclear ...
In solids spinning at the magic angle, the indirect detection of single-quantum (SQ) and double-quantum (DQ) N-14 spectra (l = 1) via spy nuclei S = 1/2 such as protons can be achieved in the manner of heteronuclear single- or multiple-quantum correlation ...
The broad resonances underlying the entire (1) H NMR spectrum of the brain, ascribed to macromolecules, can influence metabolite quantification. At the intermediate field strength of 3 T, distinct approaches for the determination of the macromolecule signa ...
Engrailed 2 is a transcription factor belonging to the class of homeoproteins. These proteins possess a 60-residue DNA binding globular domain and play an important role in the early stages of development. We expressed and purified a 13.4 kDa fragment of E ...
A drastic reduction of the time required for two-dimensional NMR experiments can be achieved by reducing or skipping the recovery delay between successive experiments. Novel SMAll Recovery Times (SMART) methods use orthogonal pulsed field gradients in thre ...
Re-protonation is key: A combination of a high magnetic field (1 GHz) and ultra-fast magic-angle spinning (60 kHz) allows easy detection of NMR spectra revealing details of secondary and tertiary structures of medium-sized proteins. The technique was appli ...