Publication

Thermodynamics of Binding of 2-Methoxy-3-isopropylpyrazine and 2-Methoxy-3-isobutylpyrazine to the Major Urinary Protein

Abstract

In the present study the authors examine the thermodn. of binding of two related pyrazine-derived ligands to the major urinary protein, MUP-I, using a combination of isothermal titrn. calorimetry (ITC), x-ray crystallog., and NMR backbone 15N and Me side-chain 2H relaxation measurements. Global thermodn. data derived from ITC indicate that binding is driven by favorable enthalpic contributions, rather than the classical entropy-driven hydrophobic effect. Unfavorable entropic contributions from the protein backbone and side-chain residues in the vicinity of the binding pocket are partially offset by favorable entropic contributions at adjacent positions, suggesting a "conformational relay" mechanism whereby increased rigidity of residues on ligand binding are accompanied by increased conformational freedom of side chains in adjacent positions. The principal driving force governing ligand affinity and specificity can be attributed to solvent-driven enthalpic effects from desolvation of the protein binding pocket. [on SciFinder (R)]

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.