Structural dynamics in quantum solids. I. Steady-state spectroscopy of the electronic bubble in solid hydrogens
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Emission, absorption, and excitation spectroscopy was used for a detailed anal. of the optical transitions of Hg2 trapped in cryogenic matrixes. Upon excitation of electronic states correlating to the 3P1 or the 1P1 asymptote, fast nonradiative relaxation ...
We report on structural dynamics in simple van der Waals solids (Ar, Ne, and H2), as driven by the excitation of an impurity (NO) Rydberg state. The resulting charge redistribution induces a local radial deformation of the medium ("bubble" formation). Th ...
The spectroscopy of Hg2 mols. in Ne matrixes was studied using absorption, excitation and emission spectroscopy. Emission spectra show fluorescence from the lowest A0g+ and the B1g states, sepd. by .apprx.1500 cm-1, to the ground state X0+g. Their excitati ...
The cage-induced stabilization of fragments in excited electronic states following the UV-dissocn. of ICN in cryogenic matrixes is discussed. Emission spectra recorded upon ~A-band excitation of ICN in solid Ne, Ar and Kr exhibit a long progression of broa ...
Excitation of the A(3ss) Rydberg state of NO trapped in an H2 crystal leads to the electronic bubble formation around the NO impurity, resulting in an increase of 0.9 .ANG. of the ground state cage radius. Its dynamics was followed in real-time by femtosec ...
Higher Rydberg states of NO trapped in rare gas matrixes were studied by inducing Rydberg-Rydberg transitions from the lowest A2S+ (3ss) Rydberg state and detecting its fluorescence depletion. This technique unravels Rydberg states, which cannot be accesse ...
The dynamics of non-polar electronic solvation has been studied on a model system consisting of NO-doped solid Ar. Excitation of the lowest Rydberg state A(3ss) of NO leads to formation of an electronic 'bubble', which has been studied by femtosecond pump- ...
The medium response of solid hydrogens to an impulsive perturbation has been studied using Rydberg excitation of an NO impurity. This leads to formation of an "electronic" bubble which corresponds to a cage radius increment of about 25%. The process has ...
Transitions from bound atomic Rydberg Stark states in a static electric field to autoionizing Rydberg states above the electric-field-induced ionization threshold are studied using a broadband, tunable free-electron laser (photon energy 160-1400 cm(-1), pu ...
An atomic streak camera has been constructed that operates from the near to the far infrared. The photocathode used in conventional streak cameras for the conversion of photons to electrons has been replaced by gas-phase atoms in a Rydberg state. The low b ...