Real numberIn mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
AutomationAutomation describes a wide range of technologies that reduce human intervention in processes, namely by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques.
Positive real numbersIn mathematics, the set of positive real numbers, is the subset of those real numbers that are greater than zero. The non-negative real numbers, also include zero. Although the symbols and are ambiguously used for either of these, the notation or for and or for has also been widely employed, is aligned with the practice in algebra of denoting the exclusion of the zero element with a star, and should be understandable to most practicing mathematicians. In a complex plane, is identified with the positive real axis, and is usually drawn as a horizontal ray.
Associated Legendre polynomialsIn mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation or equivalently where the indices l and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on only if l and m are integers with 0 ≤ m ≤ l, or with trivially equivalent negative values. When in addition m is even, the function is a polynomial.
Disk (mathematics)In geometry, a disk (also spelled disc) is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary, and open if it does not. For a radius, , an open disk is usually denoted as and a closed disk is . However in the field of topology the closed disk is usually denoted as while the open disk is . In Cartesian coordinates, the open disk of center and radius R is given by the formula: while the closed disk of the same center and radius is given by: The area of a closed or open disk of radius R is πR2 (see area of a disk).
Unit diskIn mathematics, the open unit disk (or disc) around P (where P is a given point in the plane), is the set of points whose distance from P is less than 1: The closed unit disk around P is the set of points whose distance from P is less than or equal to one: Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself. Without further specifications, the term unit disk is used for the open unit disk about the origin, , with respect to the standard Euclidean metric.