We consider fundamental algorithmic number theoretic problems and their relation to a class of block structured Integer Linear Programs (ILPs) called 2-stage stochastic. A 2-stage stochastic ILP is an integer program of the form min{c(T)x vertical bar Ax = ...
Probabilistic arguments about the existence of technological life beyond Earth traditionally refer to the Drake equation to draw possible estimates of the number of technologically advanced civilizations releasing, either intentionally or not, electromagne ...
The exploration of one-factorizations of complete graphs is the foundation of some classical sports scheduling problems. One has to traverse the landscape of such one-factorizations by moving from one of those to a so-called neighbor one-factorization. Thi ...
In order to describe magnetogenesis during inflation in the kinetic coupling model, we utilize a gradient expansion which is based on the fact that only long-wavelength (superhorizon) modes undergo amplification. For this purpose, we introduce a set of fun ...
This paper reports on the number field sieve computation of a 768-bit prime field discrete logarithm, describes the different parameter optimizations and resulting algorithmic changes compared to the factorization of a 768-bit RSA modulus, and briefly disc ...
The RSA cryptosystem introduced in 1977 by Ron Rivest, Adi Shamir and Len Adleman is the most commonly deployed public-key cryptosystem. Elliptic curve cryptography (ECC) introduced in the mid 80's by Neal Koblitz and Victor Miller is becoming an increasin ...
We show how the cofactorization step, a compute-intensive part of the relation collection phase of the number field sieve (NFS), can be farmed out to a graphics processing unit. Our implementation on a GTX 580 GPU, which is integrated with a state-of-the-a ...
In this paper, we present a heuristic algorithm for solving exact, as well as approximate, shortest vector and closest vector problems on lattices. The algorithm can be seen as a modified sieving algorithm for which the vectors of the intermediate sets lie ...
We propose a vector space approach for inverse rendering of a Lambertian convex object with distant light sources. In this problem, the texture of the object and arbitrary lightings are both to be recovered from multiple images of the object and its 3D mod ...
Nowadays, the most popular public-key cryptosystems are based on either the integer factorization or the discrete logarithm problem. The feasibility of solving these mathematical problems in practice is studied and techniques are presented to speed-up the ...