Weight Initialization for High Order and Multilayer Perceptrons
Related publications (44)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this PhD manuscript, we explore optimisation phenomena which occur in complex neural networks through the lens of 2-layer diagonal linear networks. This rudimentary architecture, which consists of a two layer feedforward linear network with a diagonal ...
This paper focuses on over-parameterized deep neural networks (DNNs) with ReLU activation functions and proves that when the data distribution is well-separated, DNNs can achieve Bayesoptimal test error for classification while obtaining (nearly) zero-trai ...
In this paper, we study the compression of a target two-layer neural network with N nodes into a compressed network with M < N nodes. More precisely, we consider the setting in which the weights of the target network are i.i.d. sub-Gaussian, and we minimiz ...
Human vision has evolved to make sense of a world in which elements almost never appear in isolation. Surprisingly, the recognition of an element in a visual scene is strongly limited by the presence of other nearby elements, a phenomenon known as visual c ...
Deep neural networks (DNNs) have revolutionized the field of artificial intelligence and have achieved unprecedented success in cognitive tasks such as image and speech recognition. Training of large DNNs, however, is computationally intensive and this has ...
In this paper, we study an emerging class of neural networks, the Morphological Neural networks, from some modern perspectives. Our approach utilizes ideas from tropical geometry and mathematical morphology. First, we state the training of a binary morphol ...
Unmanned aerial vehicles (UAVs) are widely deployed in air navigation, where numerous applications use them for safety-of-life and positioning, navigation, and timing tasks. Consequently, GPS spoofing attacks are more and more frequent. The aim of this wor ...
Training accurate and robust machine learning models requires a large amount of data that is usually scattered across data silos. Sharing, transferring, and centralizing the data from silos, however, is difficult due to current privacy regulations (e.g., H ...
Two distinct limits for deep learning have been derived as the network width h -> infinity, depending on how the weights of the last layer scale with h. In the neural tangent Kernel (NTK) limit, the dynamics becomes linear in the weights and is described b ...
Near-term quantum devices can be used to build quantum machine learning models, such as quantum kernel methods and quantum neural networks (QNN), to perform classification tasks. There have been many proposals on how to use variational quantum circuits as ...