Publication

Neural Network Classification and Formalization

1994
Journal paper
Abstract

In order to assist the field of neural networks in maturing, a formalization and a solid foundation are essential. Additionally, to permit the introduction of formal proofs, it is essential to have an all- encompassing formal mathematical definition of a neural network. This publication offers a neural network formalization consisting of a topological taxonomy, a uniform nomenclature, and an accompanying consistent mnemonic notation. Supported by this formalization, both a flexible hierarchical and a universal mathematical definition are presented.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (27)
Recurrent neural network
A recurrent neural network (RNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. In contrast to uni-directional feedforward neural network, it is a bi-directional artificial neural network, meaning that it allows the output from some nodes to affect subsequent input to the same nodes. Their ability to use internal state (memory) to process arbitrary sequences of inputs makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition.
Artificial neural network
Artificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Feedforward neural network
A feedforward neural network (FNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. Its flow is uni-directional, meaning that the information in the model flows in only one direction—forward—from the input nodes, through the hidden nodes (if any) and to the output nodes, without any cycles or loops, in contrast to recurrent neural networks, which have a bi-directional flow.
Show more
Related publications (47)

Task-driven neural network models predict neural dynamics of proprioception: Experimental data, activations and predictions of neural network models

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Here we provide the neural data, activation and predictions for the best models and result dataframes of our article "Task-driven neural network models predict neural dynamics of proprioception". It contains the behavioral and neural experimental data (cu ...
EPFL Infoscience2024

Expectation consistency for calibration of neural networks

Florent Gérard Krzakala, Lenka Zdeborová, Lucas Andry Clarte, Bruno Loureiro

Despite their incredible performance, it is well reported that deep neural networks tend to be overoptimistic about their prediction confidence. Finding effective and efficient calibration methods for neural networks is therefore an important endeavour tow ...
2023

Fundamental Limits in Statistical Learning Problems: Block Models and Neural Networks

Elisabetta Cornacchia

This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
EPFL2023
Show more
Related MOOCs (10)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.