Speachreading using shape and intensity information
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose an information theoretic framework for quantitative assessment of acoustic models used in hidden Markov model (HMM) based automatic speech recognition (ASR). The HMM backend expects that (i) the acoustic model yields accurate state conditional e ...
Towards the goal of improving acoustic modeling for automatic speech recognition (ASR), this work investigates the modeling of senone subspaces in deep neural network (DNN) posteriors using low-rank and sparse modeling approaches. While DNN posteriors are ...
Sensors capable of detecting and classifying volatile organic compounds (VOC) have been gaining more attention by the advent of internet-of-things (IoT) enabled devices and integration of various sensing elements into hand-held and portable devices. The re ...
Principal component analysis (PCA) finds the best linear representation of data and is an indispensable tool in many learning and inference tasks. Classically, principal components of a dataset are interpreted as the directions that preserve most of its "e ...
In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood as th ...
Here we present an electroencephalographic (EEG) collection of 71-channel datasets recorded from 14 subjects (7 males, 7 females, aged 20–40 years) while performing a visual working memory task with a T set of 150 Independent Component Analysis (ICA) decom ...
Biological oscillators are pervasive in biology, covering all aspects of life from enzyme kinetics reactions to population dynamics. Although their behaviour has been intensively studied in the last decades, the recent advances of high-throughput experimen ...
State-of-the-art acoustic models for Automatic Speech Recognition (ASR) are based on Hidden Markov Models (HMM) and Deep Neural Networks (DNN) and often require thousands of hours of transcribed speech data during training. Therefore, building multilingual ...
Many factors influence learners' performance on an activity beyond the knowledge required. Learners' on-task effort has been acknowledged for strongly relating to their educational outcomes, reflecting how actively they are engaged in that activity. Howeve ...
Component analysis is a powerful tool to identify dominant patterns of interactions in multivariate datasets. In the context of fMRI data, methods such as principal component analysis or independent component analysis have been used to identify the brain n ...