Binary classificationBinary classification is the task of classifying the elements of a set into two groups (each called class) on the basis of a classification rule. Typical binary classification problems include: Medical testing to determine if a patient has certain disease or not; Quality control in industry, deciding whether a specification has been met; In information retrieval, deciding whether a page should be in the result set of a search or not. Binary classification is dichotomization applied to a practical situation.
Linear discriminant analysisLinear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later classification.
Linear classifierIn the field of machine learning, the goal of statistical classification is to use an object's characteristics to identify which class (or group) it belongs to. A linear classifier achieves this by making a classification decision based on the value of a linear combination of the characteristics. An object's characteristics are also known as feature values and are typically presented to the machine in a vector called a feature vector.
Identity documentAn identity document (also called ID or colloquially as papers) is any document that may be used to prove a person's identity. If issued in a small, standard credit card size form, it is usually called an identity card (IC, ID card, citizen card), or passport card. Some countries issue formal identity documents, as national identification cards that may be compulsory or non-compulsory, while others may require identity verification using regional identification or informal documents.
Challenge–response authenticationIn computer security, challenge–response authentication is a family of protocols in which one party presents a question ("challenge") and another party must provide a valid answer ("response") to be authenticated. The simplest example of a challenge–response protocol is password authentication, where the challenge is asking for the password and the valid response is the correct password. An adversary who can eavesdrop on a password authentication can then authenticate itself by reusing the intercepted password.
Identity theftIdentity theft or identity infringement occurs when someone uses another person's personal identifying information, like their name, identifying number, or credit card number, without their permission, to commit fraud or other crimes. The term identity theft was coined in 1964. Since that time, the definition of identity theft has been statutorily defined throughout both the U.K. and the U.S. as the theft of personally identifiable information.
AuthenticatorAn authenticator is a means used to confirm a user's identity, that is, to perform digital authentication. A person authenticates to a computer system or application by demonstrating that he or she has possession and control of an authenticator. In the simplest case, the authenticator is a common password. Using the terminology of the NIST Digital Identity Guidelines, the party to be authenticated is called the claimant while the party verifying the identity of the claimant is called the verifier.
Probabilistic classificationIn machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to. Probabilistic classifiers provide classification that can be useful in its own right or when combining classifiers into ensembles. Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ŷ: The samples come from some set X (e.
DatabaseIn computing, a database is an organized collection of data (also known as a data store) stored and accessed electronically through the use of a database management system. Small databases can be stored on a , while large databases are hosted on computer clusters or cloud storage. The design of databases spans formal techniques and practical considerations, including data modeling, efficient data representation and storage, query languages, security and privacy of sensitive data, and distributed computing issues, including supporting concurrent access and fault tolerance.
Dimensionality reductionDimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension. Working in high-dimensional spaces can be undesirable for many reasons; raw data are often sparse as a consequence of the curse of dimensionality, and analyzing the data is usually computationally intractable (hard to control or deal with).