Audio-Visual Speech Modelling for Continuous Speech Recognition
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The goal of this thesis is to develop and design new feature representations that can improve the automatic speech recognition (ASR) performance in clean as well noisy conditions. One of the main shortcomings of the fixed scale (typically 20-30 ms long ana ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
This paper investigates the combination of cepstral normalization and cochlear implant-like speech processing for microphone array- based speech recognition. Testing speech signals are recorded by a circular microphone array and are subsequently processed ...
In this paper, we present a new approach towards high performance speech/music discrimination on realistic tasks related to the automatic transcription of broadcast news. In the approach presented here, the (local) Probability Density Function (PDF) estima ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
In this paper, we present a new approach towards high performance speech/music discrimination on realistic tasks related to the automatic transcription of broadcast news. In the approach presented here, the (local) Probability Density Function (PDF) estima ...
We address the problem of robust lip tracking, visual speech feature extraction, and sensor integration for audio-visual speech recognition applications. An appearance based model of the articulators, which represents linguistically important features, is ...