Mixed Bayesian Networks with Auxiliary Variables for Automatic Speech Recognition
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we present a new approach towards user-custom-ized password speaker verification combining the advantages of hybrid HMM/ANN systems, using Artificial Neural Networks (ANN) to estimate emission probabilities of Hidden Markov Models, and Gaus ...
In this paper, we present a new approach towards user-custom-ized password speaker verification combining the advantages of hybrid HMM/ANN systems, using Artificial Neural Networks (ANN) to estimate emission probabilities of Hidden Markov Models, and Gaus ...
HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs [12]. As shown in [13], a secondary HMM can also be used to extract robust ASR fe ...
In current automatic speech recognition (ASR) systems, the energy is not used as part of the feature vector in spite of being a fundamental feature in the speech signal. The noise inherent in its estimation degrades the system performance. In this report w ...
Pitch and energy are two fundamental features describing speech, having importance in human speech recognition. However, when incorporated as features in automatic speech recognition (ASR), they usually result in a significant degradation on recognition pe ...
Pitch and energy are two fundamental features describing speech, having importance in human speech recognition. However, when incorporated as features in automatic speech recognition (ASR), they usually result in a significant degradation on recognition pe ...
Standard hidden Markov models (HMMs), as used in automatic speech recognition (ASR), calculate their emission probabilities by an artificial neural network (ANN) or a Gaussian distribution conditioned on the hidden state variable, considering the emissions ...
As recently introduced, an HMM2 can be considered as a particular case of an HMM mixture in which the HMM emission probabilities (usually estimated through Gaussian mixtures or an artificial neural network) are modeled by state-dependent, feature-based HMM ...
As recently introduced, an HMM2 can be considered as a particular case of an HMM mixture in which the HMM emission probabilities (usually estimated through Gaussian mixtures or an artificial neural network) are modeled by state-dependent, feature-based HMM ...
HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary) HMM are modeled through (secondary) state-dependent frequency-based HMMs [12]. As shown in [13], a secondary HMM can also be used to extract robust ASR fe ...