User-Customized Password HMM Based Speaker Verification
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Many works on speech processing have dealt with auto-regressive (AR) models for spectral envelope and formant frequency estimation, mostly focusing on the estimation of the AR parameters. However, it is also interesting to be able to directly estimate the ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2011
In this work, we investigate the possible use of k-nearest neighbour (kNN) classifiers to perform frame-based acoustic phonetic classification, hence replacing Gaussian Mixture Models (GMM) or MultiLayer Perceptrons (MLP) used in standard Hidden Markov Mod ...
Within the HMM state mapping-based cross-lingual speaker adaptation framework, the minimum Kullback-Leibler divergence criterion has been typically employed to measure the similarity of two average voice state distributions from two respective languages fo ...
Preparation of a lexicon for speech recognition systems can be a significant effort in languages where the written form is not exactly phonetic. On the other hand, in languages where the written form is quite phonetic, some common words are often mispronou ...
Using phone posterior probabilities has been increasingly explored for improving automatic speech recognition (ASR) systems. In this paper, we propose two approaches for hierarchically enhancing these phone posteriors, by integrating long acoustic context, ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
We propose a stochastic phoneme space transformation technique that allows the conversion of conditional source phoneme posterior probabilities (conditioned on the acoustics) into target phoneme posterior probabilities. The source and target phonemes can b ...
Within the HMM state mapping-based cross-lingual speaker adaptation framework, the minimum Kullback-Leibler divergence criterion has been typically employed to measure the similarity of two average voice state distributions from two respective languages fo ...
Using phone posterior probabilities has been increasingly explored for improving automatic speech recognition (ASR) systems. In this paper, we propose two approaches for hierarchically enhancing these phone posteriors, by integrating long acoustic context, ...