Finding Structure in Consumer Videos by Probabilistic Hierarchical Clustering
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Data alone are worth almost nothing. While data collection is increasing exponentially worldwide, a clear distinction between retrieving data and obtaining knowledge has to be made. Data are retrieved while measuring phenomena or gathering facts. Knowledge ...
Audio segmentation, in general, is the task of segmenting a continuous audio stream in terms of acoustically homogenous regions, where the rule of homogeneity depends on the task. This thesis aims at developing and investigating efficient, robust and unsup ...
One of the shortcomings of the existing clustering methods is their problems dealing with different shape and size clusters. On the other hand, most of these methods are designed for especial cluster types or have good performance dealing with particular s ...
In this paper we propose the use of infinite models for the clustering of speakers. Speaker segmentation is obtained trough a Dirichlet Process Mixture (DPM) model which can be interpreted as a flexible model with an infinite a priori number of components. ...
In this work, we present a method that jointly separates active audio and visual structures on a given mixture. This new concept, the Blind Audiovisual Source Separation (BAVSS), is achieved by exploiting the coherence existing between the recorded signal ...
This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the a ...
The recognition of events in multimedia data is a challenging area of research. The growth in the amount of multimedia data being produced and stored increases the need for systems capable of automatically analysing this data. This analysis can aid in effi ...
In this paper we propose the use of infinite models for the clustering of speakers. Speaker segmentation is obtained trough a Dirichlet Process Mixture (DPM) model which can be interpreted as a flexible model with an infinite a priori number of components. ...
This paper aims at investigating the use of sequential clustering for speaker diarization. Conventional diarization systems are based on parametric models and agglomerative clustering. In our previous work we proposed a non-parametric method based on the a ...
In this paper we propose an approach to count the number of pedestrians, given a trajectory data set provided by a tracking system. The tracking process itself is treated as a black box providing us the input data. The idea is to apply a hierarchical clust ...