On Multi-scale Fourier Transform Analysis of Speech Signals
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Performance of a typical automatic speech recognition (ASR) system severely degrades when it encounters speech from reverberant environments. Part of the reason for this degradation is the feature extraction techniques that use analysis windows which are m ...
Performance of a typical automatic speech recognition (ASR) system severely degrades when it encounters speech from reverberant environments. Part of the reason for this degradation is the feature extraction techniques that use analysis windows which are m ...
We present a new family of two-dimensional and three-dimensional orthogonal wavelets which uses quincunx sampling. The orthogonal refinement filters have a simple analytical expression in the Fourier domain as a function of the order λ, which may be nonint ...
IEEE2005
, ,
Frequency Domain Linear Prediction (FDLP) provides an efficient way to represent temporal envelopes of a signal using auto-regressive models. For the input speech signal, we use FDLP to estimate temporal trajectories of sub-band energy by applying linear p ...
IDIAP2008
The goal of this thesis is to develop and design new feature representations that can improve the automatic speech recognition (ASR) performance in clean as well noisy conditions. One of the main shortcomings of the fixed scale (typically 20-30 ms long ana ...
EPFL2006
,
It is often acknowledged that speech signals contain short-term and long-term temporal properties that are difficult to capture and model by using the usual fixed scale (typically 20ms) short time spectral analysis used in hidden Markov models (HMMs), base ...
In this thesis, the framework of multi-stream combination has been explored to improve the noise robustness of automatic speech recognition (ASR) systems. The central idea of multi-stream ASR is to combine information from several sources to improve the pe ...
Robustness against external noise is an important requirement for automatic speech recognition (ASR) systems, when it comes to deploying them for practical applications. This thesis proposes and evaluates new feature-based approaches for improving the ASR ...
Autoregressive modeling is applied for approximating the temporal evolution of spectral density in critical-band-sized sub-bands of a segment of speech signal. The generalized autocorrelation linear predictive technique allows for a compromise between fitt ...
It is often acknowledged that speech signals contain short-term and long-term temporal properties that are difficult to capture and model by using the usual fixed scale (typically 20ms) short time spectral analysis used in hidden Markov models (HMMs), base ...