Robust Speech Recognition and Feature Extraction Using HMM2
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
It is often acknowledged that speech signals contain short-term and long-term temporal properties that are difficult to capture and model by using the usual fixed scale (typically 20ms) short time spectral analysis used in hidden Markov models (HMMs), base ...
In current automatic speech recognition (ASR) systems, the energy is not used as part of the feature vector in spite of being a fundamental feature in the speech signal. The noise inherent in its estimation degrades the system performance. In this report w ...
The purpose of this paper is to investigate the behavior of HMM2 models for the recognition of noisy speech. It has previously been shown that HMM2 is able to model dynamically important structural information inherent in the speech signal, often correspon ...
In this paper, we introduce a new noise robust representation of speech signal obtained by locating points of potential importance in the spectrogram, and parameterizing the activity of time-frequency pattern around those points. These features are referre ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
In this paper, we introduce a new noise robust representation of speech signal obtained by locating points of potential importance in the spectrogram, and parameterizing the activity of time-frequency pattern around those points. These features are referre ...
Robustness against external noise is an important requirement for automatic speech recognition (ASR) systems, when it comes to deploying them for practical applications. This thesis proposes and evaluates new feature-based approaches for improving the ASR ...