Temporal databaseA temporal database stores data relating to time instances. It offers temporal data types and stores information relating to past, present and future time. Temporal databases can be uni-temporal, bi-temporal or tri-temporal. More specifically the temporal aspects usually include valid time, transaction time or decision time. Valid time is the time period during or event time at which a fact is true in the real world. Transaction time is the time at which a fact was recorded in the database.
Document-oriented databaseA document-oriented database, or document store, is a computer program and data storage system designed for storing, retrieving and managing document-oriented information, also known as semi-structured data. Document-oriented databases are one of the main categories of NoSQL databases, and the popularity of the term "document-oriented database" has grown with the use of the term NoSQL itself. XML databases are a subclass of document-oriented databases that are optimized to work with XML documents.
Probability mass functionIn probability and statistics, a probability mass function is a function that gives the probability that a discrete random variable is exactly equal to some value. Sometimes it is also known as the discrete probability density function. The probability mass function is often the primary means of defining a discrete probability distribution, and such functions exist for either scalar or multivariate random variables whose domain is discrete.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Normal distributionIn statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter is its standard deviation. The variance of the distribution is . A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
Maximum entropy probability distributionIn statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class (usually defined in terms of specified properties or measures), then the distribution with the largest entropy should be chosen as the least-informative default.
Computer visionComputer vision tasks include methods for , , and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions. Understanding in this context means the transformation of visual images (the input to the retina in the human analog) into descriptions of the world that make sense to thought processes and can elicit appropriate action.
Marginal distributionIn probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables. This contrasts with a conditional distribution, which gives the probabilities contingent upon the values of the other variables. Marginal variables are those variables in the subset of variables being retained.
Video content analysisVideo content analysis or video content analytics (VCA), also known as video analysis or video analytics (VA), is the capability of automatically analyzing video to detect and determine temporal and spatial events. This technical capability is used in a wide range of domains including entertainment, video retrieval and video browsing, health-care, retail, automotive, transport, home automation, flame and smoke detection, safety, and security. The algorithms can be implemented as software on general-purpose machines, or as hardware in specialized video processing units.
Computer stereo visionComputer stereo vision is the extraction of 3D information from digital images, such as those obtained by a CCD camera. By comparing information about a scene from two vantage points, 3D information can be extracted by examining the relative positions of objects in the two panels. This is similar to the biological process of stereopsis. In traditional stereo vision, two cameras, displaced horizontally from one another, are used to obtain two differing views on a scene, in a manner similar to human binocular vision.