A Symmetric Transformation for LDA-based Face Verification
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we propose a system for face verification. It describes in detail each stage of the system: the modeling of the face, the extraction of relevant features and the classification of the input face as a client or an impostor. This system is bas ...
In the framework of a {B}ayesian classifier based on mixtures of gaussians, we address the problem of non-frontal face verification (when only a single (frontal) training image is available) by extending each frontal face model with artificially synthesize ...
The performance of face authentication systems has steadily improved over the last few years. State-of-the-art methods use the projection of the gray-scale face image into a Linear Discriminant subspace as input of a classifier such as Support Vector Machi ...
In this paper, we address the problem of finding image decompositions that allow good compression performance, and that are also efficient for face authentication. We propose to decompose the face image using Matching Pursuit and to perform the face authen ...
One of the major problem in face verification is to deal with a few number of images per person to train the system. A solution to that problem is to generate virtual samples from an unique image by doing simple geometric transformations such as translatio ...
The performance of face verification systems has steadily improved over the last few years. State-of-the-art methods use the projection of the gray-scale face image into a Linear Discriminant subspace as input of a classifier such as Support Vector Machine ...
Humans have the ability to learn. Having seen an object we can recognise it later. We can do this because our nervous system uses an efficient and robust visual processing and capabilities to learn from sensory input. On the other hand, designing algorithm ...
In much of the literature devoted to face recognition, experiments are performed with controlled images (e.g. manual face localization, controlled lighting, background and pose); however, a practical recognition system has to be robust to more challenging ...
Face localization is the process of finding the exact position of a face in a given image. This can be useful in several applications such as face tracking or person authentication. The purpose of this paper is to show that the error made during the locali ...
Face localization is the process of finding the exact position of a face in a given image. This can be useful in several applications such as face tracking or person authentication. The purpose of this paper is to show that the error made during the locali ...