Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Our comprehension of human brain functions and their dynamics has been dramatically improved by recent developments in non-invasive imaging techniques. These methods can be divided into two different categories, according to the nature of the measured sign ...
By directly analyzing brain activity, Brain-Computer Interfaces (BCIs) allow for communication that does not rely on any muscular control and therefore constitute a possible communication channel for the completely paralyzed. Typically, the user performs d ...
Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are r ...
In this work we present a multichannel EEG decomposition model based on an adaptive topographic time-frequency approximation technique. It is an extension of the Matching Pur- suit algorithm and called Dependency Multichannel Matching Pursuit (DMMP). It ta ...
The dream of controlling and guiding computer-based systems using human brain signals has slowly but steadily become a reality. The available technology allows real-time implementation of systems that measure neuronal activity, convert their signals, and t ...
A brain-computer interface (BCI) is a communication system that translates brain activity into commands for a computer or other devices. In other words, a BCI allows users to act on their environment by using only brain activity, without using peripheral n ...
Over the last years evidence has accumulated that shows the possibility to analyze human brain activity on-line and translate brain states into actions such as selecting a letter from a virtual keyboard or moving a robotics device. These initial results ha ...
A Brain-Computer Interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major c ...
In order to permit a brain computer efficient communication, it is important to dispose of an efficient algorithm to decode the brain electrical activity. We will focus our attention on an algorithm based on microstates segmentation of the brain electrical ...
This paper proposes and implements biophysical constraints to select a unique solution to the bioelectromagnetic inverse problem. It first shows that the brain's electric fields and potentials are predominantly due to ohmic currents. This serves to reformu ...