Pseudo-Syntactic Language Modeling for Disfluent Speech Recognition
Related publications (49)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state ...
This article proposes a novel feature-extraction framework for inferring impression personality traits, emergent leadership skills, communicative competence, and hiring decisions. The proposed framework extracts multimodal features, describing each partici ...
Speech-to-speech translation is a framework which recognises speech in an input language, translates it to a target language and synthesises speech in this target language. In such a system, variations in the speech signal which are inherent to natural hum ...
Machine Translation (MT) has progressed tremendously in the past two decades. The rule-based and interlingua approaches have been superseded by statistical models, which learn the most likely translations from large parallel corpora. System design does not ...
Since the prosody of a spoken utterance carries information about its discourse function, salience, and speaker attitude, prosody mod- els and prosody generation modules have played a crucial part in text-to- speech (TTS) synthesis systems from the beginni ...
A Language Model (LM) is a helpful component of a variety of Natural Language Processing (NLP) systems today. For speech recognition, machine translation, information retrieval, word sense disambiguation etc., the contribution of an LM is to provide featur ...
By modeling pedagogical scenarios as directed geometrical graphs and proposing an associated modeling language, this book describes how rich learning activities, often designed for small classes, can be scaled up for use with thousands of participants. Wit ...
Domain adaptation of a language model aims at re-estimating word sequence probabilities in order to better match the peculiarities of a given broad topic of interest. To achieve this task, a common strategy consists in retrieving adaptation texts from the ...
Machine Translation (MT) has progressed tremendously in the past two decades. The rule-based and interlingua approaches have been superseded by statistical models, which learn the most likely translations from large parallel corpora. System design does not ...
École Polytechnique Fédérale de Lausanne (EPFL)2014
Domain adaptation of a language model aims at re-estimating word sequence probabilities in order to better match the peculiarities of a given broad topic of interest. To achieve this task, a common strategy consists in retrieving adaptation texts from the ...