Towards using hierarchical posteriors for flexible automatic speech recognition systems
Related publications (55)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Class posterior distributions can be used to classify or as intermediate features, which can be further exploited in different classifiers (e.g., Gaussian Mixture Models, GMM) towards improving speech recognition performance. In this paper we examine the p ...
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
Multimodal signal processing analyzes a physical phenomenon through several types of measures, or modalities. This leads to the extraction of higher-quality and more reliable information than that obtained from single-modality signals. The advantage is two ...
We propose a tractable equilibrium model for pricing defaultable bonds that are subject to contagion risk. Contagion arises because agents with 'fragile beliefs' are uncertain about both the underlying state of the economy and the posterior probabilities a ...
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
In this paper, we propose a novel framework to integrate articulatory features (AFs) into HMM- based ASR system. This is achieved by using posterior probabilities of different AFs (estimated by multilayer perceptrons) directly as observation features in Ku ...
Recent research has demonstrated the effectiveness of vocal tract length normalization (VTLN) as a rapid adaptation technique for statistical parametric speech synthesis. VTLN produces speech with naturalness preferable to that of MLLR- based adaptation te ...
Recent research has demonstrated the effectiveness of vocal tract length normalization (VTLN) as a rapid adaptation technique for statistical parametric speech synthesis. VTLN produces speech with naturalness preferable to that of MLLR based adaptation tec ...
In this paper, we propose a novel framework to integrate articulatory features (AFs) into HMM- based ASR system. This is achieved by using posterior probabilities of different AFs (estimated by multilayer perceptrons) directly as observation features in Ku ...
We present a framework to apply Volterra series to analyze multilayered perceptrons trained to estimate the posterior probabilities of phonemes in automatic speech recognition. The identified Volterra kernels reveal the spectro-temporal patterns that are l ...