Can a Professional Imitator Fool a GMM-Based Speaker Verification System?
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the literature, the task of dysarthric speech intelligibility assessment has been approached through development of different low-level feature representations, subspace modeling, phone confidence estimation or measurement of automatic speech recognitio ...
The performance of speaker recognition systems has considerably improved in the last decade. This is mainly due to the development of Gaussian mixture model-based systems and in particular to the use of i-vectors. These systems handle relatively well noise ...
Speaker verification systems traditionally extract and model cepstral features or filter bank energies from the speech signal. In this paper, inspired by the success of neural network-based approaches to model directly raw speech signal for applications su ...
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical relationship between the acoustic speech signal and the HMM states that represent linguistically motivated subword units such as phonemes is a crucial st ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...
In a recent work, we have shown that speaker verification systems can be built where both features and classifiers are directly learned from the raw speech signal with convolutional neural networks (CNNs). In this framework, the training phase also decides ...
In this paper, we are interested in exploring Deep Neural Network (DNN) based speaker embedding for Random-digit task using content information. To this end, a technique is applied to automatically select common phonetic units between the enrollment and te ...
This paper introduces a new task termed low-latency speaker spotting (LLSS). Related to security and intelligence applications, the task involves the detection, as soon as possible, of known speakers within multi-speaker audio streams. The paper describes ...
This paper explores novel ideas in building end-to-end deep neural network (DNN) based text-dependent speaker verification (SV) system. The baseline approach consists of mapping a variable length speech segment to a fixed dimensional speaker vector by esti ...