Singular spectrum analysisIn time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. Its roots lie in the classical Karhunen (1946)–Loève (1945, 1978) spectral decomposition of time series and random fields and in the Mañé (1981)–Takens (1981) embedding theorem. SSA can be an aid in the decomposition of time series into a sum of components, each having a meaningful interpretation.
Principal component analysisPrincipal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a statistical technique for reducing the dimensionality of a dataset. This is accomplished by linearly transforming the data into a new coordinate system where (most of) the variation in the data can be described with fewer dimensions than the initial data.
Facial recognition systemA facial recognition system is a technology potentially capable of matching a human face from a or a video frame against a database of faces. Such a system is typically employed to authenticate users through ID verification services, and works by pinpointing and measuring facial features from a given image. Development began on similar systems in the 1960s, beginning as a form of computer application. Since their inception, facial recognition systems have seen wider uses in recent times on smartphones and in other forms of technology, such as robotics.
Kaiser windowThe Kaiser window, also known as the Kaiser–Bessel window, was developed by James Kaiser at Bell Laboratories. It is a one-parameter family of window functions used in finite impulse response filter design and spectral analysis. The Kaiser window approximates the DPSS window which maximizes the energy concentration in the main lobe but which is difficult to compute. The Kaiser window and its Fourier transform are given by: where: I0 is the zeroth-order modified Bessel function of the first kind, L is the window duration, and α is a non-negative real number that determines the shape of the window.
Implosive consonantImplosive consonants are a group of stop consonants (and possibly also some affricates) with a mixed glottalic ingressive and pulmonic egressive airstream mechanism. That is, the airstream is controlled by moving the glottis downward in addition to expelling air from the lungs. Therefore, unlike the purely glottalic ejective consonants, implosives can be modified by phonation. Contrastive implosives are found in approximately 13% of the world's languages.
Speech codingSpeech coding is an application of data compression to digital audio signals containing speech. Speech coding uses speech-specific parameter estimation using audio signal processing techniques to model the speech signal, combined with generic data compression algorithms to represent the resulting modeled parameters in a compact bitstream. Common applications of speech coding are mobile telephony and voice over IP (VoIP).
Markov modelIn probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.
Hidden Markov modelA hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process — call it — with unobservable ("hidden") states. As part of the definition, HMM requires that there be an observable process whose outcomes are "influenced" by the outcomes of in a known way.
ConsonantIn articulatory phonetics, a consonant is a speech sound that is articulated with complete or partial closure of the vocal tract. Examples are [p] and [b], pronounced with the lips; [t] and [d], pronounced with the front of the tongue; [k] and [g], pronounced with the back of the tongue; [h], pronounced in the throat; [f], [v], and [s], pronounced by forcing air through a narrow channel (fricatives); and [m] and [n], which have air flowing through the nose (nasals). Contrasting with consonants are vowels.
Markov chainA Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs now." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC).