Object-based languageThe term object-based language may be used in a technical sense to describe any programming language that uses the idea of encapsulating state and operations inside objects. Object-based languages need not support inheritance or subtyping, but those that do are also termed object-oriented. Object-based languages that do not support inheritance or subtyping are usually not considered to be true object-oriented languages.
C Sharp (programming language)C# (pronounced ) is a general-purpose high-level programming language supporting multiple paradigms. C# encompasses static typing, strong typing, lexically scoped, imperative, declarative, functional, generic, object-oriented (class-based), and component-oriented programming disciplines. The C# programming language was designed by Anders Hejlsberg from Microsoft in 2000 and was later approved as an international standard by Ecma (ECMA-334) in 2002 and ISO/IEC (ISO/IEC 23270) in 2003. Microsoft introduced C# along with .
Functional programmingIn computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can.
Object-oriented analysis and designObject-oriented analysis and design (OOAD) is a technical approach for analyzing and designing an application, system, or business by applying object-oriented programming, as well as using visual modeling throughout the software development process to guide stakeholder communication and product quality. OOAD in modern software engineering is typically conducted in an iterative and incremental way. The outputs of OOAD activities are analysis models (for OOA) and design models (for OOD) respectively.
ML (programming language)ML (Meta Language) is a general-purpose functional programming language. It is known for its use of the polymorphic Hindley–Milner type system, which automatically assigns the types of most expressions without requiring explicit type annotations, and ensures type safety - there is a formal proof that a well-typed ML program does not cause runtime type errors. ML provides pattern matching for function arguments, garbage collection, imperative programming, call-by-value and currying.
Kotlin (programming language)Kotlin (ˈkɒtlɪn) is a cross-platform, statically typed, general-purpose high-level programming language with type inference. Kotlin is designed to interoperate fully with Java, and the JVM version of Kotlin's standard library depends on the Java Class Library, but type inference allows its syntax to be more concise. Kotlin mainly targets the JVM, but also compiles to JavaScript (e.g., for frontend web applications using React) or native code via LLVM (e.g., for native iOS apps sharing business logic with Android apps).
Simply typed lambda calculusThe simply typed lambda calculus (), a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor () that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus. The term simple type is also used to refer extensions of the simply typed lambda calculus such as products, coproducts or natural numbers (System T) or even full recursion (like PCF).
Typed lambda calculusA typed lambda calculus is a typed formalism that uses the lambda-symbol () to denote anonymous function abstraction. In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below). From a certain point of view, typed lambda calculi can be seen as refinements of the untyped lambda calculus, but from another point of view, they can also be considered the more fundamental theory and untyped lambda calculus a special case with only one type.
Prefix codeA prefix code is a type of code system distinguished by its possession of the "prefix property", which requires that there is no whole code word in the system that is a prefix (initial segment) of any other code word in the system. It is trivially true for fixed-length code, so only a point of consideration in variable-length code. For example, a code with code words {9, 55} has the prefix property; a code consisting of {9, 5, 59, 55} does not, because "5" is a prefix of "59" and also of "55".
Type safetyIn computer science, type safety and type soundness are the extent to which a programming language discourages or prevents type errors. Type safety is sometimes alternatively considered to be a property of facilities of a computer language; that is, some facilities are type-safe and their usage will not result in type errors, while other facilities in the same language may be type-unsafe and a program using them may encounter type errors.