Publication

Fingerprinting Agent-Environment Interaction via Information Theory

2004
Conference paper
Abstract

In this paper, we investigate by means of statistical and information-theoretic measures, to what extent sensory-motor coordinated activity can generate and structure information in the sensory channels of a simulated agent interacting with its surrounding environment. We show how the usage of correlation, entropy, and mutual information can be employed (a) to segment an observed behavior into distinct behavioral states, (b) to quantify (fingerprint) the agent-environment interaction, and (c) to analyze the informational relationship between the different components of the sensory-motor apparatus. We hypothesize that a deeper understanding of the information-theoretic implications of sensory-motor coordination can help us endow our robots with better sensory morphologies, and with better strategies for exploring their surrounding environment.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.