Direct method in the calculus of variationsIn mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of a solution, direct methods may be used to compute the solution to desired accuracy. The calculus of variations deals with functionals , where is some function space and .
Extreme value theoremIn calculus, the extreme value theorem states that if a real-valued function is continuous on the closed interval , then must attain a maximum and a minimum, each at least once. That is, there exist numbers and in such that: The extreme value theorem is more specific than the related boundedness theorem, which states merely that a continuous function on the closed interval is bounded on that interval; that is, there exist real numbers and such that: This does not say that and are necessarily the maximum and minimum values of on the interval which is what the extreme value theorem stipulates must also be the case.
Series (mathematics)In mathematics, a series is, roughly speaking, the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics) through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.
Ontological argumentAn ontological argument is a philosophical argument, made from an ontological basis, that is advanced in support of the existence of God. Such arguments tend to refer to the state of being or existing. More specifically, ontological arguments are commonly conceived a priori in regard to the organization of the universe, whereby, if such organizational structure is true, God must exist.
Intrinsic metricIn the mathematical study of metric spaces, one can consider the arclength of paths in the space. If two points are at a given distance from each other, it is natural to expect that one should be able to get from the first point to the second along a path whose arclength is equal to (or very close to) that distance. The distance between two points of a metric space relative to the intrinsic metric is defined as the infimum of the lengths of all paths from the first point to the second.
Borel measureIn mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Let be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of ; this is known as the σ-algebra of Borel sets. A Borel measure is any measure defined on the σ-algebra of Borel sets.
Convex functionIn mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain.
Analytic functionIn mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about converges to the function in some neighborhood for every in its domain.
Category of metric spacesIn , Met is a that has metric spaces as its and metric maps (continuous functions between metric spaces that do not increase any pairwise distance) as its morphisms. This is a category because the composition of two metric maps is again a metric map. It was first considered by . The monomorphisms in Met are the injective metric maps. The epimorphisms are the metric maps for which the domain of the map has a dense in the range. The isomorphisms are the isometries, i.e. metric maps which are injective, surjective, and distance-preserving.
Hölder conditionIn mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, α > 0, such that for all x and y in the domain of f. More generally, the condition can be formulated for functions between any two metric spaces. The number α is called the exponent of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition.