On the Use of A Priori Information for Sparse Signal Approximations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the problem of reconstruction of astrophysical signals probed by radio interferometers with baselines bearing a non-negligible component in the pointing direction. The visibilities measured essentially identify with a noisy and incomplete Fouri ...
We propose a variant of Orthogonal Matching Pursuit (OMP), called LoCOMP, for scalable sparse signal approximation. The algorithm is designed for shift- invariant signal dictionaries with localized atoms, such as time-frequency dictionaries, and achieves a ...
This paper analyzes the performance of the simple thresholding algorithm for sparse signal representations. In particular, in order to be more realistic we introduce a new probabilistic signal model which assumes randomness for both the amplitude and also ...
This paper exploits recent developments in sparse approximation and compressive sensing to efficiently perform localization in a sensor network. We introduce a Bayesian framework for the localization problem and provide sparse approximations to its optimal ...
The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression – sparsity – to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) ...
We introduce a new signal model, called (K,C)-sparse, to capture K-sparse signals in N dimensions whose nonzero coefficients are contained within at most C clusters, with C < K < N. In contrast to the existing work in the sparse approximation and compress ...
This article presents an alteration of greedy algorithms like thresholding or (Orthogonal) Matching Pursuit which improves their performance in finding sparse signal representations in redundant dictionaries. These algorithms can be split into a sensing an ...
This paper addresses the problem of correct recovery of multiple sparse correlated signals using distributed thresholding. We consider the scenario where multiple sensors capture the same event, but observe different signals that are correlated by local tr ...
Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet common example is the problem of finding those signals in a database that are closest to a query. In this paper, we tackle this problem by restricting ...
Consider a scenario where a distributed signal is sparse and is acquired by various sensors that see different versions. Thus, we have a set of sparse signals with both some common parts, and some variations. The question is how to acquire such signals and ...