Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We find, contrary to previous reports, that substantial cleavage of glucagon by insulin proteinase occurs at only one region, namely the double-basic sequence -Arg17-Arg18-. Cleavage takes place almost exclusively between these two residues, liberating fragments glucagon-(1-17) and glucagon-(18-29). Others have shown that the fragment glucagon-(19-29) is 1000-fold more efficient compared with intact glucagon, at inhibiting the Ca2+-activated and Mg2+-dependent ATPase activity and the Ca2+ pump of liver plasma membranes. We show that this fragment is not liberated in detectable quantities by our insulin proteinase preparation. On the other hand, others have shown that glucagon-(18-29), though less active than glucagon-(19-29), was still 100-fold more active than glucagon itself in the above-mentioned system. Our observations represent the first demonstration of the release by insulin proteinase of a hormone fragment having enhanced activity, although it has yet to be shown that the activity of this fragment is important in vivo. Since the formation of glucagon-(19-29) from glucagon-(18-29) would involve merely removal of Arg18, a second enzyme might exist to provide the more active fragment.
Jonathan Paz Montoya, Howard Riezman
,
Loïc Dayon, Andreas Wiederkehr, Sofia Moco, Isabelle Chareyron