Publication

Self-Organized Embedded Sensor/Actuator Networks for ''Smart'' Turbines

Abstract

Combining networks of static sensors with minimalist robotic swarms might enable a new generation of micromachinery equipped with sensor and actuator networks for inspection, maintenance, and repair. In such a scenario, limited capabilities of swarm members (due to miniaturization or for economical reasons) might render deterministic algorithms unfeasible and require a self-organized approach. Driven by a case study concerned with the autonomous inspection of a jet turbine engine, we identify three main research axes: development of appropriate hardware, modeling and design of self-organized dynamical systems, and synthesis of robot controllers to achieve a desired collective behavior, which is for instance provided by an human operator during runtime. We also present our developments of embedded communication systems for miniature robots, allowing for communication within the swarm and static nodes in the environment. Such networks of static and mobile nodes might allow for sophisticated spatio-temporal coordination, which would otherwise require localization and navigation abilities that are unfeasible on miniature platforms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.