Publication

Simulation of some quantum models for semiconductors

Jean Descloux
2002
Journal paper
Abstract

Three different existing steady-state models with quantum correction for simulating the resonant tunnelling diode are summarized. Numerical methods and a theoretical argument for one of the models are briefly described. Results of simulation axe focused on the capability of reproducing the negative differential resistivity.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Simulation
A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Often, computers are used to execute the simulation. Simulation is used in many contexts, such as simulation of technology for performance tuning or optimizing, safety engineering, testing, training, education, and video games.
Quantum computing
A quantum computer is a computer that exploits quantum mechanical phenomena. At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer.
Quantum error correction
Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum preparation, and faulty measurements. This would allow algorithms of greater circuit depth. Classical error correction employs redundancy.
Show more
Related publications (41)

Quantum Error Correction and Simulation in Open Bosonic Systems

David Schlegel

Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
EPFL2024

Transition to chaos in extended systems and their quantum impurity models

Camille Didier Georges Aron

Chaos sets a fundamental limit to quantum-information processing schemes. We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices. We consider an extended version of the Tavis-Cummings model ...
Bristol2024

lifex-ep: a robust and efficient software for cardiac electrophysiology simulations

Alfio Quarteroni, Francesco Regazzoni, Stefano Pagani, Marco Fedele

Background: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors ...
London2023
Show more
Related MOOCs (21)
Electronics
Introduction à l’électronique analogique- première partie. Fonctions de base réalisées à l’aide des amplificateurs opérationnels.
Electronics
Introduction à l’électronique analogique- première partie. Fonctions de base réalisées à l’aide des amplificateurs opérationnels.
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.