Digital cameraA digital camera is a camera that captures photographs in digital memory. Most cameras produced today are digital, largely replacing those that capture images on photographic film. Digital cameras are now widely incorporated into mobile devices like smartphones with the same or more capabilities and features of dedicated cameras (which are still available). High-end, high-definition dedicated cameras are still commonly used by professionals and those who desire to take higher-quality photographs.
Mass surveillance industryThe mass surveillance industry is a multibillion-dollar industry that has undergone phenomenal growth since 2001. According to data provided by The Wall Street Journal, the retail market for surveillance tools has grown from "nearly zero" in 2001 to about US5billionin2011.ThesizeofthevideosurveillancemarketrosetoUS13.5 billion in 2012 and is expected to reach US$39 billion by 2020. Camera phoneA camera phone is a mobile phone which is able to capture photographs and often record video using one or more built-in digital cameras. It can also send the resulting image wirelessly and conveniently. The first commercial phone with color camera was the Kyocera Visual Phone VP-210, released in Japan in May 1999. Most camera phones are smaller and simpler than the separate digital cameras. In the smartphone era, the steady sales increase of camera phones caused point-and-shoot camera sales to peak about 2010 and decline thereafter.
Object-oriented programmingObject-Oriented Programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data and code. The data is in the form of fields (often known as attributes or properties), and the code is in the form of procedures (often known as methods). A common feature of objects is that procedures (or methods) are attached to them and can access and modify the object's data fields. In this brand of OOP, there is usually a special name such as or used to refer to the current object.
Scale-invariant feature transformThe scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. Applications include object recognition, robotic mapping and navigation, , 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving. SIFT keypoints of objects are first extracted from a set of reference images and stored in a database.
Video trackingVideo tracking is the process of locating a moving object (or multiple objects) over time using a camera. It has a variety of uses, some of which are: human-computer interaction, security and surveillance, video communication and compression, augmented reality, traffic control, medical imaging and video editing. Video tracking can be a time-consuming process due to the amount of data that is contained in video. Adding further to the complexity is the possible need to use object recognition techniques for tracking, a challenging problem in its own right.
Template matchingTemplate matching is a technique in for finding small parts of an image which match a template image. It can be used for quality control in manufacturing, navigation of mobile robots, or edge detection in images. The main challenges in a template matching task are detection of occlusion, when a sought-after object is partly hidden in an image; detection of non-rigid transformations, when an object is distorted or imaged from different angles; sensitivity to illumination and background changes; background clutter; and scale changes.
Object modelIn computing, object model has two related but distinct meanings: The properties of objects in general in a specific computer programming language, technology, notation or methodology that uses them. Examples are the object models of Java, the Component Object Model (COM), or Object-Modeling Technique (OMT). Such object models are usually defined using concepts such as class, generic function, message, inheritance, polymorphism, and encapsulation.
MapA map is a symbolic depiction emphasizing relationships between elements of some space, such as objects, regions, or themes. Many maps are static, fixed to paper or some other durable medium, while others are dynamic or interactive. Although most commonly used to depict geography, maps may represent any space, real or fictional, without regard to context or scale, such as in brain mapping, DNA mapping, or computer network topology mapping.
Video content analysisVideo content analysis or video content analytics (VCA), also known as video analysis or video analytics (VA), is the capability of automatically analyzing video to detect and determine temporal and spatial events. This technical capability is used in a wide range of domains including entertainment, video retrieval and video browsing, health-care, retail, automotive, transport, home automation, flame and smoke detection, safety, and security. The algorithms can be implemented as software on general-purpose machines, or as hardware in specialized video processing units.