Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
Why are materials with specific characteristics more abundant than others? This is a fundamental question in materials science and one that is traditionally difficult to tackle, given the vastness of compositional and configurational space. We highlight he ...
The optical domain presents potential avenues for enhancing both computing and communication due to its inherent
properties of bandwidth, parallelism, and energy efficiency. This research focuses on harnessing 3-Dimensional (3D)
diffractive optics for nove ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
Molecular junctions represent a fascinating frontier in the realm of nanotechnology and are one of the
smallest optoelectronic devices possible, consisting of individual molecules or a group of molecules
that serve as the active element sandwiched between ...
We demonstrate the use of both pixelated differential phase contrast (DPC) scanning transmission electron microscopy (STEM) and off-axis electron holography (EH) for the measurement of electric fields and assess the advantages and limitations of each techn ...
Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy c ...
Low-level light detection with high spatial and timing accuracy is a growing area of interest by virtue of applications such as light detection and ranging (LiDAR), biomedical imaging, time-resolved Raman spectroscopy, and quantum applications. Single-phot ...