Multiplexed 3D imaging using wavelength encoded spectral interferometry: a proof of principle
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A solid-state imager fabricated in CMOS technology is presented for depth information capture of arbitrary 3D objects with millimeter resolution. The system is based on an array of 32x32 pixels that independently measure the time-of-flight of a ray of ligh ...
A 3D imager is presented capable of computing the depth map as well as the intensity scale of a given scene. The heart of the system is a two-dimensional array of single photon avalanche diodes fabricated in standard CMOS technology. The diodes exhibit low ...
A 3D imager is presented capable of capturing the depth map of an arbitrary scene. Depth is measured by computing the time-of-flight of a ray of light as it leaves the source and is reflected by the objects in the scene. The round-trip time is converted to ...
Nowadays, 3D multimedia applications have grown rapidly in number and consist of complex systems (e.g. 3D graphical processing or games) that process extensive amounts of data to create 3D images and results. This produces highcost and high-power consumpti ...
An 8x4 avalanche diode array in a 0.8μm CMOS process uses single photon counting for time-of-light range finding with 100ps 40mW decollimated laser pulses. An accuracy of 618μm is achieved from 15cm to 1m with 10e4 pulses. ...