Publication

Effect of filler behavior on nanocomposite SU8 photoresist for moving micro- parts

Abstract

The use of low-stress SU8 nanocomposites as a functional material for micro- parts and coating applications is described in this paper. It was found that the nanoparticles lower the internal stress and decrease the wear rate and frictional coefficient of the SU8 epoxy. The applicability of this technology is demonstrated on gear wheels configuration and coating multilayer capping technology on moving micro-parts

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Nanoparticle
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.
Gear
A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth (called cogs), which mesh with another (compatible) toothed part to transmit (convert) torque and speed. The basic principle behind the operation of gears is analogous to the basic principle of levers. A gear may also be known informally as a cog. Geared devices can change the speed, torque, and direction of a power source.
MEMS
MEMS (Microelectromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres to a millimetre (i.e., 0.02 to 1.0 mm), although components arranged in arrays (e.g., digital micromirror devices) can be more than 1000 mm2.
Show more
Related publications (36)

A story of two transitions: From adhesive to abrasive wear and from ductile to brittle regime

Jean-François Molinari, Sacha Zenon Wattel

Atomistic simulations performed with a family of model potential with tunable hardness have proven to be a great tool for advancing the understanding of wear processes at the asperity level. They have been instrumental in finding a critical length scale, w ...
2024

Tailor-made Piezoelectric Elastomer Materials

Francis Owusu

Recent advancements in miniature devices with higher computational capabilities and ultralow power consumption have accelerated the development of wearable sensors, actuators, and energy harvesters everywhere. The ultimate aim of such a technological revol ...
EPFL2023

High-efficiency non-ablative UV laser nano-scale processing of fused silica by stable filamentation

Yves Bellouard, Olivier Bernard, Benedikt Hermann, Luca Muscarella

Over the last decades, three-dimensional micro-manufacturing of fused silica via near-infrared ultrafast laser exposure combined with an etching step has become an established technique for producing complex three-dimensional components. Here, we explore t ...
2023
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.