Mutual information eigenlips for audio-visual speech recognition
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper presents our approach for automatic speech recognition (ASR) of overlapping speech. Our system consists of two principal components: a speech separation component and a feature estmation component. In the speech separation phase, we first estima ...
Speaker detection is an important component of a speech-based user interface. Audiovisual speaker detection, speech and speaker recognition or speech synthesis for example find multiple applications in human-computer interaction, multimedia content indexin ...
We present a feature selection method based on information theoretic measures, targeted at multimodal signal processing, showing how we can quantitatively assess the relevance of features from different modalities. We are able to find the features with the ...
We address issues for improving hands-free speech recognition performance in the presence of multiple simultaneous speakers using multiple distant microphones. In this paper, a log spectral mapping is proposed to estimate the log mel-filterbank outputs of ...
In this work, we propose different strategies for efficiently integrating an automated speech recognition module in the framework of a dialogue-based vocal system. The aim is the study of different ways leading to the improvement of the quality and robustn ...
This thesis presents a PhD work on offline cursive handwriting recognition, the automatic transcription of cursive data when only its image is available. Two main approaches were used in the literature to solve the problem. The first one attempts to segmen ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
The recognition of speech in meetings poses a number of challenges to current Automatic Speech Recognition (ASR) techniques. Meetings typically take place in rooms with non-ideal acoustic conditions and significant background noise, and may contain large s ...