Probabilistic graphical models for human interaction analysis
Related publications (58)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The identification of accident hot spots is a central task of road safety management. Bayesian count data models have emerged as the workhorse method for producing probabilistic rankings of hazardous sites in road networks. Typically, these methods assume ...
One of the paramount challenges in neuroscience is to understand the dynamics of individual neurons and how they give rise to network dynamics when interconnected. Historically, researchers have resorted to graph theory, statistics, and statistical mechani ...
MIT PRESS2019
,
In this paper we study the properties of the quenched pressure of a multi-layer spin-glass model (a deep Boltzmann Machine in artificial intelligence jargon) whose pairwise interactions are allowed between spins lying in adjacent layers and not inside the ...
SPRINGER2020
,
Decentralized machine learning over peer-to-peer networks is very appealing for it enables to learn personalized models without sharing users data, nor relying on any central server. Peers can improve upon their locally trained model across a network graph ...
Recommender systems typically determine the items they should recommend by learning models of user-preferences. Most often, those preferences are modeled as static and independent of context. In real life however, users consider items in sequence: TV serie ...
In this thesis, we assess a new framework called UMIN on a data-driven optimization problem. Such a problem happens recurrently in real life and can quickly become dicult to model when the input has a high dimensionality as images for instance. From the ar ...
Humans are comparison machines: comparing and choosing an item among a set of alternatives (such as objects or concepts) is arguably one of the most natural ways for us to express our preferences and opinions. In many applications, the analysis of data con ...
This master thesis provides in-depth explanations of how deep learning and graph theory can be used together to perform pointwise classification in 3D point clouds obtained by combinations of geospatial images. That scene understanding problem arises in a ...
In recent years, Machine Learning based Computer Vision techniques made impressive progress. These algorithms proved particularly efficient for image classification or detection of isolated objects. From a probabilistic perspective, these methods can predi ...
The connectivity of a neuronal network has a major effect on its functionality and role. It is generally believed that the complex network structure of the brain provides a physiological basis for information processing. Therefore, identifying the network’ ...