Polyunsaturated fatty acidIn biochemistry and nutrition, polyunsaturated fatty acids (abbreviated PUFAs) are fatty acids that contain more than one double bond in their backbone. This class includes many important compounds, such as essential fatty acids and those that give drying oils their characteristic property. Polyunsaturated fatty acids are precursors to and are derived from polyunsaturated fats. Polyunsaturated fatty acids are a subclass of fatty acids possessing two or more carbon–carbon double bonds.
Permeability (Earth sciences)Permeability in fluid mechanics and the Earth sciences (commonly symbolized as k) is a measure of the ability of a porous material (often, a rock or an unconsolidated material) to allow fluids to pass through it. Permeability is a property of porous materials that is an indication of the ability for fluids (gas or liquid) to flow through them. Fluids can more easily flow through a material with high permeability than one with low permeability.
Omega-6 fatty acidOmega-6 fatty acids (also referred to as ω-6 fatty acids or n-6 fatty acids) are a family of polyunsaturated fatty acids that have in common a final carbon-carbon double bond in the n-6 position, that is, the sixth bond, counting from the methyl end. One review found that an increased intake of omega‐6 fatty acids has been shown to reduce total serum cholesterol and may reduce myocardial infarction (heart attack). The same review found no significant change in LDL cholesterol and triglycerides.
Darcy's lawDarcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences. It is analogous to Ohm's law in electrostatics, linearly relating the volume flow rate of the fluid to the hydraulic head difference (which is often just proportional to the pressure difference) via the hydraulic conductivity.
Fatty acidIn chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. Fatty acids are a major component of the lipids (up to 70% by weight) in some species such as microalgae but in some other organisms are not found in their standalone form, but instead exist as three main classes of esters: triglycerides, phospholipids, and cholesteryl esters.
Hamiltonian mechanicsHamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics.
Uniform boundedness principleIn mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.