Publication

Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors

Freddy Radtke
2000
Journal paper
Abstract

Vertebrate somitogenesis comprises the generation of a temporal periodicity, the establishment of anteroposterior compartment identity, and the translation of the temporal periodicity into the metameric pattern of somites. Molecular players at each of these steps are beginning to be identified. Especially, members of the Notch signaling cascade appear to be involved in setting up the somitogenesis clock and subsequent events. We had previously demonstrated specific expression of the mHey1 and mHey2 basic helix-loop-helix (bHLH) factors during somitogenesis. Here we show that perturbed Notch signaling in Dll1 and Notch1 knockout mutants affects this expression in the presomitic mesoderm (PSM) and the somites. In the caudal PSM, however, mHey2 expression is maintained and thus is likely to be independent of Notch signaling. Furthermore, we analysed the dynamic expression of the respective chicken c-Hey1 and c-Hey2 genes during somitogenesis. Not only is c-Hey2 rhythmically expressed across the chicken presomitic mesoderm like c-hairy1, but its transcription is similarly independent of de novo protein synthesis. In contrast, the dynamic expression of c-Hey1 is restricted to the anterior segmental plate. Both c-Hey genes are coexpressed with c-hairy1 in the posterior somite half. Further in vitro and in vivo interaction assays demonstrated direct homo- and heterodimerisation between these hairy-related bHLH proteins, suggesting a combinatorial action in both the generation of a temporal periodicity and the anterior-posterior somite compartmentalisation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (25)
Notch signaling pathway
The Notch signaling pathway is a highly conserved cell signaling system present in most animals. Mammals possess four different notch receptors, referred to as NOTCH1, NOTCH2, NOTCH3, and NOTCH4. The notch receptor is a single-pass transmembrane receptor protein. It is a hetero-oligomer composed of a large extracellular portion, which associates in a calcium-dependent, non-covalent interaction with a smaller piece of the notch protein composed of a short extracellular region, a single transmembrane-pass, and a small intracellular region.
Somite
The somites (outdated term: primitive segments) are a set of bilaterally paired blocks of paraxial mesoderm that form in the embryonic stage of somitogenesis, along the head-to-tail axis in segmented animals. In vertebrates, somites subdivide into the dermatomes, myotomes, sclerotomes and syndetomes that give rise to the vertebrae of the vertebral column, rib cage, part of the occipital bone, skeletal muscle, cartilage, tendons, and skin (of the back). The word somite is sometimes also used in place of the word metamere.
Snake
Snakes are elongated, limbless, carnivorous reptiles of the suborder Serpentes (s3r'pEntiːz). Like all other squamates, snakes are ectothermic, amniote vertebrates covered in overlapping scales. Many species of snakes have skulls with several more joints than their lizard ancestors, enabling them to swallow prey much larger than their heads (cranial kinesis). To accommodate their narrow bodies, snakes' paired organs (such as kidneys) appear one in front of the other instead of side by side, and most have only one functional lung.
Show more
Related publications (34)

How are cells instructed to form somite boundaries by the zebrafish segmentation clock?

Olivier François Venzin

In vertebrate embryos, the elongating body axis is patterned via the sequential and rhyth-mic production of segments from a posterior unsegmented tissue called the presomitic mesoderm (PSM). This process is controlled by a population of cellular oscillator ...
EPFL2023

Hunting for the wavefront: investigation of somite boundary positioning in zebrafish

Arianne Bercowsky Rama

Somitogenesis is the rhythmic and sequential formation of somites, which are tissue blocks that give rise to segmented adult body structures including the vertebrae and associated muscle. Somite formation is controlled by the segmentation clock, a populati ...
EPFL2022

Patterning and mechanics of somite boundaries in zebrafish embryos

Andrew Charles Oates, Sundar Ram Naganathan

The body axis of vertebrates is subdivided into repetitive compartments called somites, which give rise primarily to the segmented architecture of the musculoskeletal system in the adult body. Somites form in a sequential and rhythmic manner in embryos and ...
2020
Show more
Related MOOCs (6)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.