Optimal Spike-Timing Dependent Plasticity for Precise Action Potential Firing in Supervised Learning
Related publications (126)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-ou ...
Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat ...
Can we understand the interspike interval (ISI) statistics of spontaneous neural activity? What is the relation between input and output statistics of a neuron? --> Important for understanding population activity. Most theoretical studies assume that neuro ...
Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization bursts in the cerebellar Purkinje cell (PC), showing several high frequency spikelet components (+/- 600 Hz). Since its early observations, the CS is known to vary in shape. In th ...
Early-life stress is a key risk factor for the development of neuropsychiatric disorders later in life. Neuronal cell adhesion molecules have been strongly implicated in the pathophysiology of psychiatric disorders and in modulating social behaviors associ ...
Nerve cells in the brain generate sequences of action potentials with a complex statistics. Theoretical attempts to understand this statistics were largely limited to the case of a temporally uncorrelated input (Poissonian shot noise) from the neurons in t ...
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than roden ...
Recent experimental data from the rodent cerebral cortex and olfactory bulb indicate that specific connectivity motifs are correlated with short-term dynamics of excitatory synaptic transmission. It was observed that neurons with short-term facilitating sy ...
Behavioral experience alters the strength of neuronal connections in adult neocortex. These changes in synaptic strength are thought to be central to experience-dependent plasticity, learning, and memory. However, it is not known how changes in synaptic tr ...
Random networks of integrate-and-fire neurons with strong current-based synapse scan, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze ...